Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Eur J Protistol ; 88: 125969, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36822126

RESUMO

Ciliated protists contain both germline micronucleus (MIC) and somatic macronucleus (MAC) in a single cytoplasm. Programmed genome rearrangements occur in ciliates during sexual processes, and the extent of rearrangements varies dramatically among species, which lead to significant differences in genomic architectures. However, genomic sequences remain largely unknown for most ciliates due to the difficulty in culturing and in separating the germline from the somatic genome in a single cell. Single-cell whole genome amplification (WGA) has emerged as a powerful technology to characterize the genomic heterogeneity at the single-cell level. In this study, we compared two single-cell WGA, multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in characterizing the germline and somatic genomes in ciliates with different genomic architectures. Our results showed that: 1) MALBAC exhibits strong amplification bias towards MAC genome while MDA shows bias towards MIC genome of ciliates with extensively fragmented MAC genome; 2) both MDA and MALBAC could amplify MAC genome more efficiently in ciliates with moderately fragmented MAC genome. Moreover, we found that more sample replicates could help to obtain more genomic data. Our work provides a reference for selecting the appropriate method to characterize germline and somatic genomes of ciliates.


Assuntos
Cilióforos , Genômica , Genômica/métodos , Células Germinativas , Rearranjo Gênico , Macronúcleo , Micronúcleo Germinativo , Cilióforos/genética
2.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163228

RESUMO

Cytogenetic approaches play an essential role as a quick evaluation of the first genetic effects after mutagenic treatment. Although labor-intensive and time-consuming, they are essential for the analyses of cytotoxic and genotoxic effects in mutagenesis and environmental monitoring. Over the years, conventional cytogenetic analyses were a part of routine laboratory testing in plant genotoxicity. Among the methods that are used to study genotoxicity in plants, the micronucleus test particularly represents a significant force. Currently, cytogenetic techniques go beyond the simple detection of chromosome aberrations. The intensive development of molecular biology and the significantly improved microscopic visualization and evaluation methods constituted significant support to traditional cytogenetics. Over the past years, distinct approaches have allowed an understanding the mechanisms of formation, structure, and genetic activity of the micronuclei. Although there are many studies on this topic in humans and animals, knowledge in plants is significantly limited. This article provides a comprehensive overview of the current knowledge on micronuclei characteristics in plants. We pay particular attention to how the recent contemporary achievements have influenced the understanding of micronuclei in plant cells. Together with the current progress, we present the latest applications of the micronucleus test in mutagenesis and assess the state of the environment.


Assuntos
Análise Citogenética/métodos , Citogenética/tendências , Plantas/genética , Aberrações Cromossômicas , Citogenética/métodos , Monitoramento Ambiental/métodos , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos/métodos , Micronúcleo Germinativo/genética , Micronúcleo Germinativo/metabolismo , Mutagênese , Testes de Mutagenicidade , Mutagênicos/toxicidade
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163271

RESUMO

Embryo fragmentation represents a phenomenon generally characterized by the presence of membrane-bound extracellular cytoplasm into the perivitelline space. Recent evidence supports the cellular and molecular heterogeneity of embryo fragments. In this narrative review, we described the different embryo fragment-like cellular structures in their morphology, molecular content, and supposed function and have reported the proposed theories on their origin over the years. We identified articles related to characterization of embryo fragmentation with a specific literature search string. The occurrence of embryo fragmentation has been related to various mechanisms, of which the most studied are apoptotic cell death, membrane compartmentalization of altered DNA, cytoskeletal disorders, and vesicle formation. These phenomena are thought to result in the extrusion of entire blastomeres, release of apoptotic bodies and other vesicles, and micronuclei formation. Different patterns of fragmentation may have different etiologies and effects on embryo competence. Removal of fragments from the embryo before embryo transfer with the aim to improve implantation potential should be reconsidered on the basis of the present observations.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Apoptose/fisiologia , Blastômeros/fisiologia , Divisão Celular , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/metabolismo , Implantação do Embrião/fisiologia , Transferência Embrionária/métodos , Embrião de Mamíferos/metabolismo , Humanos , Micronúcleo Germinativo/fisiologia
4.
Dev Cell ; 56(24): 3364-3379.e10, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34852214

RESUMO

Failure to reorganize the endoplasmic reticulum (ER) in mitosis results in chromosome missegregation. Here, we show that accurate chromosome segregation in human cells requires cell cycle-regulated ER membrane production. Excess ER membranes increase the viscosity of the mitotic cytoplasm to physically restrict chromosome movements, which impedes the correction of mitotic errors leading to the formation of micronuclei. Mechanistically, we demonstrate that the protein phosphatase CTDNEP1 counteracts mTOR kinase to establish a dephosphorylated pool of the phosphatidic acid phosphatase lipin 1 in interphase. CTDNEP1 control of lipin 1 limits the synthesis of fatty acids for ER membrane biogenesis in interphase that then protects against chromosome missegregation in mitosis. Thus, regulation of ER size can dictate the biophysical properties of mitotic cells, providing an explanation for why ER reorganization is necessary for mitotic fidelity. Our data further suggest that dysregulated lipid metabolism is a potential source of aneuploidy in cancer cells.


Assuntos
Ciclo Celular , Segregação de Cromossomos , Retículo Endoplasmático/metabolismo , Linhagem Celular , Ácidos Graxos/biossíntese , Humanos , Metáfase , Micronúcleo Germinativo/metabolismo , Mitose , Modelos Biológicos , Fosfatidato Fosfatase/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/metabolismo , Viscosidade
5.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819364

RESUMO

Mitotic errors can activate cyclic GMP-AMP synthase (cGAS) and induce type I interferon (IFN) signaling. Current models propose that chromosome segregation errors generate micronuclei whose rupture activates cGAS. We used a panel of antimitotic drugs to perturb mitosis in human fibroblasts and measured abnormal nuclear morphologies, cGAS localization, and IFN signaling in the subsequent interphase. Micronuclei consistently recruited cGAS without activating it. Instead, IFN signaling correlated with formation of cGAS-coated chromatin bridges that were selectively generated by microtubule stabilizers and MPS1 inhibitors. cGAS activation by chromatin bridges was suppressed by drugs that prevented cytokinesis. We confirmed cGAS activation by chromatin bridges in cancer lines that are unable to secrete IFN by measuring paracrine transfer of 2'3'-cGAMP to fibroblasts, and in mouse cells. We propose that cGAS is selectively activated by self-chromatin when it is stretched in chromatin bridges. Immunosurveillance of cells that fail mitosis, and antitumor actions of taxanes and MPS1 inhibitors, may depend on this effect.


Assuntos
Cromatina/fisiologia , Mitose/fisiologia , Nucleotidiltransferases/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Humanos , Interferon Tipo I/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Micronúcleo Germinativo/genética , Micronúcleo Germinativo/fisiologia , Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/fisiologia , Transdução de Sinais
6.
Cell ; 184(22): 5506-5526, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34715021

RESUMO

Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.


Assuntos
Envelhecimento/metabolismo , Citoplasma/metabolismo , DNA/metabolismo , Doença , Animais , Humanos , Micronúcleo Germinativo/metabolismo , Retroelementos/genética
7.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613334

RESUMO

Cycling cells must respond to DNA double-strand breaks (DSBs) to avoid genome instability. Missegregation of chromosomes with DSBs during mitosis results in micronuclei, aberrant structures linked to disease. How cells respond to DSBs during mitosis is incompletely understood. We previously showed that Drosophilamelanogaster papillar cells lack DSB checkpoints (as observed in many cancer cells). Here, we show that papillar cells still recruit early acting repair machinery (Mre11 and RPA3) and the Fanconi anemia (FA) protein Fancd2 to DSBs. These proteins persist as foci on DSBs as cells enter mitosis. Repair foci are resolved in a stepwise manner during mitosis. DSB repair kinetics depends on both monoubiquitination of Fancd2 and the alternative end-joining protein DNA polymerase θ. Disruption of either or both of these factors causes micronuclei after DNA damage, which disrupts intestinal organogenesis. This study reveals a mechanism for how cells with inactive DSB checkpoints can respond to DNA damage that persists into mitosis.


Assuntos
Quebra Cromossômica , Segregação de Cromossomos , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Drosophila melanogaster/metabolismo , Transdução de Sinais , Animais , Quebras de DNA de Cadeia Dupla , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Testes Genéticos , Micronúcleo Germinativo/metabolismo , Mitose , Mutação/genética , Ubiquitinação
8.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204826

RESUMO

Mexedrone, α-PVP and α-PHP are synthetic cathinones. They can be considered amphetamine-like substances with a stimulating effect. Actually, studies showing their impact on DNA are totally absent. Therefore, in order to fill this gap, aim of the present work was to evaluate their mutagenicity on TK6 cells. On the basis of cytotoxicity and cytostasis results, we selected the concentrations (35-100 µM) to be used in the further analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by flow cytometry. Mexedrone demonstrated its mutagenic potential contrary to the other two compounds; we then proceeded by repeating the analyzes in the presence of extrinsic metabolic activation in order to check if it was possible to totally exclude the mutagenic capacity for α-PVP and α-PHP. The results demonstrated instead the mutagenicity of their metabolites. We then evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the highlighted effects but the results did not show a statistically significant increase in ROS levels for any of the tested substances. Anyway, our outcomes emphasize the importance of mutagenicity evaluation for a complete assessment of the risk associated with synthetic cathinones exposure.


Assuntos
Alcaloides/toxicidade , Metanfetamina/análogos & derivados , Mutagênicos/toxicidade , Pentanonas/toxicidade , Pirrolidinas/toxicidade , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metanfetamina/toxicidade , Micronúcleo Germinativo/efeitos dos fármacos , Micronúcleo Germinativo/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Eur J Protistol ; 80: 125804, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34062315

RESUMO

The ciliated protist Tetrahymena thermophila is a well-known model organism with typical nuclear dimorphism containing a somatic macronucleus (MAC) and a germline micronucleus (MIC). The presence in the same cell compartment of two nuclei with distinctly different structural and functional properties provides an ideal model system to explore mechanisms of genome maintenance. Although methods for the isolation of MIC have been available for many years, cross-contamination and DNA degradation remain unresolved. Here, we describe a reliable and quick method to isolate MIC with high purity and DNA integrity in T. thermophila. Different factors are examined to optimize the MIC purification. The MAC contamination ratio in purified MIC is about 0.19% and DNA integrity of purified MIC is maintained. We also establish a more accurate method to detect the contamination rate of nuclei including microscopic observation and PCR detection. This study will facilitate further epigenetic research in Tetrahymena.


Assuntos
DNA de Protozoário/isolamento & purificação , Epigenômica/métodos , Micronúcleo Germinativo/genética , Tetrahymena thermophila/genética , DNA de Protozoário/química , Epigênese Genética
10.
J Radiat Res ; 62(4): 618-625, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33912960

RESUMO

Metformin, a first-line oral drug for type II diabetes mellitus, not only reduces blood glucose levels, but also has many other biological effects. Recent studies have been conducted to determine the protective effect of metformin in irradiation injuries. However, the results are controversial and mainly focus on the time of metformin administration. In this study, we aimed to investigate the protective effect of metformin in BALB/c mice exposed to 6 Gy or 8 Gy of a 60Co source of γ-rays for total body irradiation (TBI). Survival outcomes were assessed following exposure to 8 Gy or 6 Gy TBI, and hematopoietic damage and intestinal injury were assessed after exposure to 6 Gy TBI. Metformin prolonged the survival of mice exposed to 8 Gy TBI and improved the survival rate of mice exposed to 6 Gy TBI only when administered before exposure to irradiation. Moreover, pretreatment with metformin reduced the frequency of micronuclei (MN) in the bone marrow of mice exposed to 6 Gy TBI. Pretreatment of metformin also protected the intestinal morphology of mice, reduced inflammatory response and decreased the number of apoptotic cells in intestine. In conclusion, we demonstrated that pretreatment with metformin could alleviate irradiation injury.


Assuntos
Metformina/farmacologia , Irradiação Corporal Total , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Intestinos/patologia , Intestinos/efeitos da radiação , Masculino , Camundongos Endogâmicos BALB C , Micronúcleo Germinativo/metabolismo , Análise de Sobrevida
11.
Nat Genet ; 53(6): 895-905, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846636

RESUMO

Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR-Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR-Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored.


Assuntos
Sistemas CRISPR-Cas/genética , Cromotripsia , Edição de Genes , Anemia Falciforme/genética , Antígenos CD34/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Divisão Celular , Cromossomos Humanos/genética , Clivagem do DNA , Genoma Humano , Humanos , Micronúcleo Germinativo/genética , Proteína Supressora de Tumor p53/metabolismo
12.
J Cell Physiol ; 236(5): 3579-3598, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33078399

RESUMO

Genome instability in cancer drives tumor heterogeneity, undermines the success of therapies, and leads to metastasis and recurrence. Condensins are conserved chromatin-binding proteins that promote genomic stability, mainly by ensuring proper condensation of chromatin and mitotic chromosome segregation. Condensin mutations are found in human tumors, but it is not known how or even if such mutations promote cancer progression. In this study, we focus on condensin II subunit CAPH2 and specific CAPH2 mutations reported to be enriched in human cancer patients, and we test how CAPH2 cancer-specific mutations may lead to condensin II complex dysfunction and contribute to genome instability. We find that R551P, R551S, and S556F mutations in CAPH2 cause genomic instability by causing DNA damage, anaphase defects, micronuclei, and chromosomal instability. DNA damage and anaphase defects are caused primarily by ataxia telangiectasia and Rad3-related-dependent telomere dysfunction, as anaphase bridges are enriched for telomeric repeat sequences. We also show that these mutations decrease the binding of CAPH2 to the ATPase subunit SMC4 as well as the rest of the condensin II complex, and decrease the amount of CAPH2 protein bound to chromatin. Thus, in vivo the R551P, R551S, and S556F cancer-specific CAPH2 mutant proteins are likely to impair condensin II complex formation, impede condensin II activity during mitosis and interphase, and promote genetic heterogeneity in cell populations that can lead to clonal outgrowth of cancer cells with highly diverse genotypes.


Assuntos
Adenosina Trifosfatases/genética , Anáfase , Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/metabolismo , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Complexos Multiproteicos/genética , Mutação/genética , Neoplasias/genética , Proteínas Nucleares/metabolismo , Telômero/patologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Micronúcleo Germinativo/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Neoplasias/patologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Fase S , Telômero/metabolismo
13.
Chem Biol Interact ; 332: 109283, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035519

RESUMO

1-Methylpyrene (1-MP) is a ubiquitous environmental pollutant and rodent carcinogen. Its mutagenic activity depends on sequential activation by various CYP and sulfotransferase (SULT) enzymes. Previously we have observed induction of micronuclei and mitotic arrest by 1-MP in a Chinese hamster (V79)-derived cell line expressing both human CYP1A2 and SULT1A1 (V79-hCYP1A2-hSULT1A1), however, the mode of chromosome damage and the involvement of mitotic tubulin structures have not been clarified. In this study, we used immunofluorescent staining of centromere protein B (CENP-B) with the formed micronuclei, and that of ß- and γ-tubulin reflecting the structures of mitotic spindle and centrioles, respectively, in V79-hCYP1A2-hSULT1A1 cells. The results indicated that 1-MP induced micronuclei in V79-hCYP1A2-hSULT1A1 cells from 0.125 to 2 µM under a 24 h/0 h (exposure/recovery) regime, while in the parental V79-Mz cells micronuclei were induced by 1-MP only at concentrations ≥ 8 µM; in both cases, the micronuclei induced by 1-MP were predominantly CENP-B positive. Following 54 h of exposure, 1-MP induced mitotic spindle non-congression and centrosome amplification (multipolar mitosis) in V79-hCYP1A2-hSULT1A1 cells, and anaphase/telophase retardation, at concentrations ≥ 0.125 µM with concentration-dependence; while in V79-Mz cells it was inactive up to 8 µM. This study suggests that in mammalian cells proficient in activating enzymes 1-MP may induce chromosome loss and mitotic disturbance, probably by interfering with the mitotic spindle and centrioles.


Assuntos
Arilsulfotransferase/metabolismo , Cromossomos de Mamíferos/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Mitose/efeitos dos fármacos , Pirenos/farmacologia , Animais , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína B de Centrômero/metabolismo , Cricetinae , Humanos , Micronúcleo Germinativo/efeitos dos fármacos , Micronúcleo Germinativo/metabolismo , Índice Mitótico , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo
14.
Toxicol Ind Health ; 36(6): 454-466, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32787740

RESUMO

Exposure to inhalation anesthetics (IAs) has been associated with DNA damage as reflected in the increased frequency of micronuclei (MN) and chromosomal aberrations (CAs). The present study was undertaken to ascertain whether there was any correlation between increased MN and CA and the extent of oxidative stress as well as the antioxidant status of a group of operating room personnel exposed to a mixture of IAs, including nitrous oxide, isoflurane, and sevoflurane. In this cross-sectional study, 60 operating room personnel (exposed group) in whom the frequencies of MN and CA had already been shown to be significantly higher than those of a referent group, as well as 60 unexposed nurses, were studied. Venous blood samples were taken from all participants, and malondialdehyde (MDA) levels as an index of oxidative stress (OS) and the activity of superoxide dismutase (SOD) and levels of total antioxidant capacity (TAC) as indices of antioxidant status were measured. The level of TAC (1.76 ± 0.59 mM vs. 2.13 ± 0.64 mM, p = 0.001) and the activity of SOD (11.22 ± 5.11 U/ml vs. 13.36 ± 4.12 U/ml, p = 0.01) were significantly lower, while the mean value of MDA was significantly higher (2.46 ± 0.66 µM vs. 2.19 ± 0.68 µM, p = 0.03) in the exposed group than in the nonexposed group. After adjusting for potential confounders, there were statistically significant associations between exposure to IAs, gender, SOD, and TAC with MN frequency and between exposure to IAs and SOD with numbers of CA. The findings of the present study indicated that exposure to IAs was associated with OS, and this, in turn, may be causally linked with DNA damage.


Assuntos
Anestésicos Inalatórios/farmacologia , Dano ao DNA/efeitos dos fármacos , Pessoal de Saúde , Estresse Oxidativo/efeitos dos fármacos , Adulto , Biomarcadores , Estudos Transversais , Feminino , Humanos , Irã (Geográfico) , Masculino , Malondialdeído/sangue , Micronúcleo Germinativo/efeitos dos fármacos , Pessoa de Meia-Idade , Salas Cirúrgicas , Fatores Sexuais , Superóxido Dismutase/sangue
15.
Annu Rev Cell Dev Biol ; 36: 85-114, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32692592

RESUMO

The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.


Assuntos
Membrana Nuclear/patologia , Animais , Instabilidade Genômica , Humanos , Imunidade Inata , Micronúcleo Germinativo/metabolismo , Modelos Biológicos , Membrana Nuclear/metabolismo
16.
Sci Rep ; 10(1): 8720, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457346

RESUMO

In most organisms, cells typically maintain genome integrity, as radical genome reorganization leads to dramatic consequences. However, certain organisms, ranging from unicellular ciliates to vertebrates, are able to selectively eliminate specific parts of their genome during certain stages of development. Moreover, partial or complete elimination of one of the parental genomes occurs in interspecies hybrids reproducing asexually. Although several examples of this phenomenon are known, the molecular and cellular processes involved in selective elimination of genetic material remain largely undescribed for the majority of such organisms. Here, we elucidate the process of selective genome elimination in water frog hybrids from the Pelophylax esculentus complex reproducing through hybridogenesis. Specifically, in the gonads of diploid and triploid hybrids, but not those of the parental species, we revealed micronuclei in the cytoplasm of germ cells. In each micronucleus, only one centromere was detected with antibodies against kinetochore proteins, suggesting that each micronucleus comprises a single chromosome. Using 3D-FISH with species-specific centromeric probe, we determined the role of micronuclei in selective genome elimination. We found that in triploid LLR hybrids, micronuclei preferentially contain P. ridibundus chromosomes, while in diploid hybrids, micronuclei preferentially contain P. lessonae chromosomes. The number of centromere signals in the nuclei suggested that germ cells were aneuploid until they eliminate the whole chromosomal set of one of the parental species. Furthermore, in diploid hybrids, misaligned P. lessonae chromosomes were observed during the metaphase stage of germ cells division, suggesting their possible elimination due to the inability to attach to the spindle and segregate properly. Additionally, we described gonocytes with an increased number of P. ridibundus centromeres, indicating duplication of the genetic material. We conclude that selective genome elimination from germ cells of diploid and triploid hybrids occurs via the gradual elimination of individual chromosomes of one of the parental genomes, which are enclosed within micronuclei.


Assuntos
Cromossomos/genética , Micronúcleo Germinativo/genética , Rana esculenta/genética , Animais , Centrômero/genética , Centrômero/metabolismo , Quimera/genética , Cromossomos/metabolismo , Evolução Molecular , Feminino , Células Germinativas/química , Hibridização in Situ Fluorescente , Masculino , Micronúcleo Germinativo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
17.
PLoS Genet ; 16(4): e1008723, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32298257

RESUMO

Gene duplication and diversification drive the emergence of novel functions during evolution. Because of whole genome duplications, ciliates from the Paramecium aurelia group constitute a remarkable system to study the evolutionary fate of duplicated genes. Paramecium species harbor two types of nuclei: a germline micronucleus (MIC) and a somatic macronucleus (MAC) that forms from the MIC at each sexual cycle. During MAC development, ~45,000 germline Internal Eliminated Sequences (IES) are excised precisely from the genome through a 'cut-and-close' mechanism. Here, we have studied the P. tetraurelia paralogs of KU80, which encode a key DNA double-strand break repair factor involved in non-homologous end joining. The three KU80 genes have different transcription patterns, KU80a and KU80b being constitutively expressed, while KU80c is specifically induced during MAC development. Immunofluorescence microscopy and high-throughput DNA sequencing revealed that Ku80c stably anchors the PiggyMac (Pgm) endonuclease in the developing MAC and is essential for IES excision genome-wide, providing a molecular explanation for the previously reported Ku-dependent licensing of DNA cleavage at IES ends. Expressing Ku80a under KU80c transcription signals failed to complement a depletion of endogenous Ku80c, indicating that the two paralogous proteins have distinct properties. Domain-swap experiments identified the α/ß domain of Ku80c as the major determinant for its specialized function, while its C-terminal part is required for excision of only a small subset of IESs located in IES-dense regions. We conclude that Ku80c has acquired the ability to license Pgm-dependent DNA cleavage, securing precise DNA elimination during programmed rearrangements. The present study thus provides novel evidence for functional diversification of genes issued from a whole-genome duplication.


Assuntos
Genoma de Protozoário , Instabilidade Genômica , Autoantígeno Ku/genética , Proteínas de Protozoários/genética , Duplicação Gênica , Autoantígeno Ku/química , Autoantígeno Ku/metabolismo , Macronúcleo/genética , Macronúcleo/metabolismo , Micronúcleo Germinativo/genética , Micronúcleo Germinativo/metabolismo , Paramecium/genética , Paramecium/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
18.
Genome Res ; 30(3): 406-414, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32165395

RESUMO

The somatic macronucleus (MAC) and germline micronucleus (MIC) of Tetrahymena thermophila differ in chromosome numbers, sizes, functions, transcriptional activities, and cohesin complex location. However, the higher-order chromatin organization in T. thermophila is still largely unknown. Here, we explored the higher-order chromatin organization in the two distinct nuclei of T. thermophila using the Hi-C and HiChIP methods. We found that the meiotic crescent MIC has a specific chromosome interaction pattern, with all the telomeres or centromeres on the five MIC chromosomes clustering together, respectively, which is also helpful to identify the midpoints of centromeres in the MIC. We revealed that the MAC chromosomes lack A/B compartments, topologically associating domains (TADs), and chromatin loops. The MIC chromosomes have TAD-like structures but not A/B compartments and chromatin loops. The boundaries of the TAD-like structures in the MIC are highly consistent with the chromatin breakage sequence (CBS) sites, suggesting that each TAD-like structure of the MIC chromosomes develops into one MAC chromosome during MAC development, which provides a mechanism of the formation of MAC chromosomes during conjugation. Overall, we demonstrated the distinct higher-order chromatin organization in the two nuclei of the T. thermophila and suggest that the higher-order chromatin structures may play important roles during the development of the MAC chromosomes.


Assuntos
Cromatina/química , Cromossomos/química , Macronúcleo/genética , Micronúcleo Germinativo/genética , Tetrahymena thermophila/genética , Centrômero , Meiose/genética
19.
J Radiat Res ; 61(1): 1-13, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31845986

RESUMO

Human oxidation resistance 1 (OXR1) was identified as a protein that decreases genomic mutations in Escherichia coli caused by oxidative DNA damage. However, the mechanism by which OXR1 defends against genome instability has not been elucidated. To clarify how OXR1 maintains genome stability, the effects of OXR1-depletion on genome stability were investigated in OXR1-depleted HeLa cells using gamma-rays (γ-rays). The OXR1-depleted cells had higher levels of superoxide and micronucleus (MN) formation than control cells after irradiation. OXR1-overexpression alleviated the increases in reactive oxygen species (ROS) level and MN formation after irradiation. The increased MN formation in irradiated OXR1-depleted cells was partially attenuated by the ROS inhibitor N-acetyl-L-cysteine, suggesting that OXR1-depeletion increases ROS-dependent genome instability. We also found that OXR1-depletion shortened the duration of γ-ray-induced G2/M arrest. In the presence of the cell cycle checkpoint inhibitor caffeine, the level of MN formed after irradiation was similar between control and OXR1-depleted cells, demonstrating that OXR1-depletion accelerates MN formation through abrogation of G2/M arrest. In OXR1-depleted cells, the level of cyclin D1 protein expression was increased. Here we report that OXR1 prevents genome instability by cell cycle regulation as well as oxidative stress defense.


Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Raios gama , Instabilidade Genômica/efeitos da radiação , Proteínas Mitocondriais/metabolismo , Mitose/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Células HeLa , Humanos , Peróxido de Hidrogênio/toxicidade , Micronúcleo Germinativo/efeitos dos fármacos , Micronúcleo Germinativo/metabolismo , Micronúcleo Germinativo/efeitos da radiação , Proteínas Mitocondriais/deficiência , Mitose/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Superóxidos/metabolismo
20.
Rev. toxicol ; 37(1): 19-25, 2020. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-194441

RESUMO

Uncontrolled waste disposal has continuously threatened the health of the surrounding environment through the leaching of hazardous xenobiotics. Systemic toxicity and genotoxicity potential of waste leachates from Onitsha municipal dumpsite were investigated in giant African land snail (Limicolaria aurora) through oxidative stress biomarker and micronucleus test assessment respectively. Physicochemical indices were evaluated in the leachate following standard protocols. Snails were exposed to different concentrations (0, 6.25, 12.5, 25.0 and 50.0%) of waste leachate for 21 days; oxidative stress biomarkers and micronucleus analysis performed on snail digestive gland and hemocyte respectively. The leachate induced dose-duration dependent increase (P< 0.05) in Superoxide dismutase, Catalase, malondialdehyde and Glutathione peroxidase levels with associated decrease in total protein concentrations in the exposed snails compared to the control. Similarly, the frequency of micronucleus and other nuclear abnormalities shows concentration dependent increase (P< 0.05) in treated groups. This observed genotoxic effect might be induced by the oxidative stress, via the production of reactive oxygen species. This shows that waste leachate contains hazardous and genotoxic compounds capable of inducing oxidative stress and DNA damage. Therefore, continuous exposure of waste leachate into the environment could pose a grave health risk to the surrounding biota, humans included


No disponible


Assuntos
Animais , Estresse Oxidativo/genética , Esgotos , Eliminação de Resíduos Líquidos , Caramujos/genética , Micronúcleo Germinativo/genética , Monitoramento Ambiental/métodos , 34709
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...